DRAFT
ENVIRONMENTAL IMPACT STATEMENT

PROPOSED JERICHO RISE WIND FARM PROJECT
TOWN OF BELLMONT
TOWN OF CHATEAUGAY
FRANKLIN COUNTY, NEW YORK

Co-Lead Agencies:
Town of Bellmont and Town of Chateaugay

Date of Submittal: February 5, 2008
Date of Acceptance: ____________
Comment Submittal Deadline: _______

Prepared for:
Jericho Rise Wind Farm LLC
52 James Street 4th Floor
Albany, New York 12207

FEBRUARY 2008

Prepared by:
TETRATECH EC, INC.

VOLUME 1 OF 2
FIRMS INVOLVED IN PREPARATION OF THIS DEIS

This Draft Environmental Impact Statement has been developed pursuant to the State Environmental Quality Review Act (6 NYCRR 617) under the direction of the Applicant, Jericho Rise Wind Farm LLC, with input from the following list of preparers. The Applicant's lead consultant, Tetra Tech EC, Inc., was responsible for the majority of the SEQRA required elements of the document.

Jericho Rise Wind Farm LLC
3 Columbia Place
Albany, New York 12207
Patrick Doyle
(518) 426-1650

Tetra Tech EC, Inc.
133 Federal Street
Boston, Massachusetts 02110
Lucia Kearns
(617) 457-8205

Nixon Peabody LLP
Omni Plaza
30 South Pearl Street
Albany, NY 12207
(518) 427-2665

Comsearch
19700 Janelia Farms Blvd.
Ashburn, Virginia 20147
Les Polisky
(703) 716-5500

Cushman and Wakefield
200 SW Market Street
Portland, Oregon 97201
P. Barton DeLacy
(503) 279-1795

Fisher Associates
135 Calkins Road
Rochester, New York 14623
Christopher Smith
(585) 334-1310

Western EcoSystems Technology, Inc.
2003 Central Avenue
Cheyenne, Wyoming 82001
David Young
(307) 634-1756
EXECUTIVE SUMMARY

This Draft Environmental Impact Statement (DEIS) is being prepared to describe the potential environmental impacts and mitigation measures associated with the construction and operation of the proposed Jericho Rise Wind Farm (the Project) as required under the New York State Environmental Quality Review Act (SEQRA) (6 NYCRR 617). Provided below is a brief Project description, along with summaries of the regulatory process; the Project's purpose, need, and benefit; a summary of potential environmental impacts; and proposed mitigation measures. Alternatives to the Project and its effect on use and conservation of energy are also reviewed.

Project Description

Jericho Rise Wind Farm LLC (the Applicant) is proposing to develop a wind-powered generating facility of up to 53 wind turbines with a maximum capacity of 87.45 megawatts (MW). The proposed Project would meet the electrical needs of approximately 25,500 New York households. In addition to the wind turbines, the Project will involve construction of up to four permanent meteorological towers, a system of gravel access roads, a buried and overhead electrical collection system, an operation and maintenance building, and an interconnection substation facility.

The Project will be developed on leased private land in the towns of Bellmont and Chateaugay in Franklin County, New York (see Figure 1.1-1, Project Area). The Project will be constructed in one phase, currently anticipated to commence as early as fall 2008 and to finish in fall 2009.

Once built, the wind turbines and associated components operate in almost a completely automated fashion. The Project will, however, employ approximately 10 to 15 personnel.

Regulatory Process

This DEIS has been prepared by Tetra Tech EC, Inc. (Tetra Tech) of Boston, MA. This document is intended to facilitate the environmental review process and to provide a basis for informed public comment and decision-making. This process is in accordance with the requirements of SEQRA. The towns of Bellmont and Chateaugay are acting as Joint Lead Agencies to provide a coordinated review under SEQRA. Various support studies have also been performed for the Project, which provide detailed information on discrete topical areas in furtherance of the SEQRA evaluation. These studies include, but are not limited to, the following:

- Phase IA Cultural Resource Investigation
- Shadow Flicker Analysis
- Transportation Study
- Aviation Hazard Assessment
- TV Broadcast Off-Air Reception
- Licensed Microwave Search and Worst Case Fresnel Zone
• Avian and Bat Studies
• Visual Impact Assessment Report
• Environmental Sound Survey and Noise Impact Assessment
• Property Value Impact Assessment

Purpose, Need, and Benefit

The purpose of the proposed action is to create a wind-powered electrical-generating facility that will provide a significant source of renewable energy to the New York power grid. The Project would facilitate compliance with the Public Service Commission (PSC) "Order Approving Renewable Portfolio Standard Policy (Order)," issued on September 24, 2004. This Order calls for an increase in renewable energy used in the state to 25 percent (from the then level of 19 percent) by the year 2013. The Project responds to objectives identified in the 2002 New York State Energy Plan (State Energy Plan) and Final Environmental Impact Statement (New York State Energy Planning Board, 2002), and the Preliminary Investigation into Establishing a Renewable Portfolio Standard in New York (NYSERDA 2003). These objectives include stimulating economic growth, increasing energy diversity, and promoting a cleaner and healthier environment. The benefits of the proposed action include positive impacts on socioeconomics (e.g., payment-in-lieu of tax (PILOT) revenues to local municipalities, lease revenues to participating landowners, and reduced wholesale electricity prices statewide), air quality (through reduction of emissions from fossil-fuel-burning power plants), and climate (reduction of greenhouse gases that contribute to global warming). The principal, overriding benefits of the Project are in complete accordance with the 2002 State Energy Plan (New York State Energy Planning Board, 2002), namely:

"Stimulating sustainable economic growth"
"Increasing energy diversity...including renewable-based energy", and
"Promoting and achieving a cleaner and healthier environment"

Summary of Potential Impacts

In accordance with the requirements of the SEQRA process, potential impacts arising from the proposed action were identified early in the application process and are evaluated in this DEIS with respect to an array of environmental and cultural resources. Provided below is a list of all potential impacts that may occur in association with the construction and/or operation of the Project. These impacts and associated mitigation measures are described in detail in this DEIS.
<table>
<thead>
<tr>
<th>Environmental Factor</th>
<th>Potential Impacts</th>
</tr>
</thead>
</table>
| Topography, Geology, and Soils | • Soil erosion
 • Soil compaction
 • Loss of agricultural land |
| Surface and Groundwater Resources | • Stream crossings
 • Siltation/sedimentation
 • Temporary disturbance
 • Wetland filling
 • Permanent stream crossings |
| Biological Resources | • Vegetation clearing
 • Incidental wildlife injury and mortality
 • Loss or alteration of habitat |
| Land Use and Zoning | • Adverse and beneficial impacts on farming
 • Changes in community character and land use trends |
| Socioeconomic | • Host community payment / PILOT
 • Revenue to participating landowners
 • Expenditures on goods and services
 • Tourism
 • Short and long-term employment |
| Transportation | • Road wear
 • Traffic congestion/delays
 • Road system improvements/upgrades |
| Cultural Resources | • Visual impacts on architectural resources
 • Disturbance of historic archaeological resources |
| Visual Resources | • Visual change to the landscape
 • Visual impact on sensitive sites/viewers
 • Shadow-flicker impact on adjacent residents |
| Community Services, Public Utilities, and Infrastructure | • Demands on police and emergency services
 • Telecommunication interference
 • Utility distribution lines and poles
 • Bulk power system upgrade
 • New source of clean renewable energy |
| Communications | • Interference with public, private or government communication facilities. |
| Public Safety | • Stray voltage
 • Tower collapse/blade failure
 • Ice throw
 • Lightning strike
 • Fire |
Environmental Factor | Potential Impacts
--- | ---
Climate and Air Quality | • Construction vehicle emissions
• Dust during construction
• Reduced air pollutants and greenhouse gases
Noise | • Construction noise impacts on neighboring/adjacent residents
• Operational noise impacts on neighboring/adjacent residents

The Project is expected to result in positive, long-term agricultural and socioeconomic impacts within the Project Area and across the state, and to provide benefits to the region’s air quality.

The Project will result in minor, generally short-term impacts to soils, vegetation, wetlands, wildlife habitat, and transportation facilities as a result of Project construction. The Project will have long-term effects on community character, avian/bat resources, ambient noise levels, and some historic and visual resources during operation. However, with the inclusion of proper mitigation measures, and a Complaint Resolution Procedure (Appendix N), operational impacts other than the Project’s visibility will be limited and minor.

Summary of Mitigation Measures
Various measures will be taken to avoid, minimize and/or mitigate potential environmental impacts. General mitigation measures will include adhering to requirements of various local, state, and federal ordinances and regulations, and entering into development agreements with adjacent landowners. The Applicant will also employ an environmental inspector to assure compliance with permit requirements and environmental protection commitments during construction and operation of the Project. The proposed Project will result in significant environmental and economic benefits to the area. These benefits also serve to mitigate unavoidable adverse impacts associated with Project construction and operation.

Specific measures designed to mitigate or avoid adverse potential environmental impacts during Project construction or operations include the following:

- Siting the Project away from population centers and areas of residential development.
- Siting Project components outside of areas of mature forestland to the extent practicable.
- Locating access roads and turbines along field edges where practical and in field corners to avoid or minimize disturbance of agricultural land.
- Keeping turbines a minimum of 1,000 feet from residences in Bellmont and 1,320 feet from residences in Chateaugay that do not directly receive Project benefits, to minimize noise and visual impacts.
Utilizing multiple-megawatt scale turbines to reduce the length of interconnect and access roads per megawatt of capacity.

Burying electrical interconnection lines between turbines except where unavoidable due to sensitive environmental/cultural resources, to minimize agricultural impacts, or construction constraints.

Using existing roads for turbine access whenever possible to minimize disturbance to agricultural land, wildlife habitat, wetlands, and streams.

Utilizing construction techniques that minimize disturbance to vegetation, streams, and wetlands.

Siting the interconnection substation facilities in an area screened by existing mature vegetation.

Painting the turbines with a matte non-specular finish.

Developing and implementing a sedimentation and erosion control plan.

Proposing a compensatory stream/wetland mitigation program.

Siting select turbines to avoid or minimize wetland, wildlife, or visual impacts.

Performing post-construction monitoring to improve understanding of possible avian impacts.

Siting turbines to avoid interference with microwave and AM/FM communication systems.

Implementing agricultural protection measures to avoid, minimize, or mitigate impacts on agricultural land and farm operations.

Developing a traffic and dust management plan during construction.

Upgrading public roads utilized during construction.

Finalizing a component delivery plan that minimizes impacts on residential areas.

Developing and implementing a historic resource protection plan in concert with the New York State Historic Preservation Office (SHPO).

Developing and implementing a Complaint Resolution Procedure.

Alternatives
Alternatives to the proposed Project that were considered and evaluated include alternate Project size; alternate Project location; alternate Project layout; alternate turbine output, height, and color; and a "no action" alternative. Analysis of these alternatives revealed that the size, type, number, and the configuration of the turbines as currently proposed are necessary to produce a commercially feasible Project. The Applicant has investigated several alternative locations across northern New York and rejected many locations due to significant development constraints, including migratory bird issues, incompatible land uses, lack of contiguous land, a lack of adequate wind resource, unsuitable transmission facilities, and lack of likely community acceptability. All suitable locations, including the proposed Project Site, must be seriously considered if the State is to meet its obligations regarding domestic generation of renewable energy by 2013. The Applicant has nearly continuously revised the Project layout since its
inception in an effort to optimize the balance between energy generation with the protection of agricultural, environmental, and aesthetic resources, as well as community safety and welfare. The Applicant considered several types of wind energy conversion technologies for the Project. However, the 3-bladed, upwind, horizontal axis, propeller-type wind turbine provides the smallest land-use footprint per unit of energy generated, and has demonstrated itself as the most reliable and commercially viable for the application of utility scale electrical power generation. The Applicant has reduced the size of the originally proposed Project layout from over 60 turbines to the 53 currently proposed and reviewed in this DEIS. This reduction in size was made in large part due to the siting parameters described above. The Applicant has also considered reducing the Project size by using either smaller or fewer turbines in this current layout. Doing so, however, would not fully capture the available wind resource and both hurt the State’s objective of supplying domestic renewable energy as well as the Project’s ability to offset fixed expenses associated with construction and connecting to the power grid. In summary, the alternatives analysis concluded that the Project as proposed offers the optimum use of resources with the fewest potential adverse impacts.

Effects on Use and Conservation of Energy Resources

The proposed Project will have significant, long-term beneficial effects on the use and conservation of energy resources. Energy will be expended during the construction phases of the Project, as well as for the maintenance of the wind turbines and support facilities on the Project Site. However, the operating Project will generate up to 87.45 MW of electricity from a renewable resource (the wind) without any fossil-fuel emissions. This greatly exceeds the energy required to construct and operate the Project. The output from the Project would power approximately 25,500 households in New York State (on an average annual basis). The Project will add to and diversify the state’s sources of power generation helping to stabilize power prices currently subject to spikes in fossil fuel prices. Over the long term, the Project will displace some of the state’s older, less efficient, and dirtier sources of power and, at a minimum, will stave off the need to build new fossil fuel plants.